Прогнозирование электропотребления методом анализа сингулярного спектра
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Manusov, V. Z.Comparison study of wind flow velocity short-term forecasting methods based on adaptive models and neural networks / V. Z. Manusov, E. A. Igumnova, S. A. Eroshenko, G. B. Nesterenko, P. V. Matrenin // International Journal of Advanced Science and Technology. - 2020. - V. 29. - № 8 Special Issue. - P. 2108 - 2115.
Matrenin, V. P. Improving accuracy and generalization performance of small-size recurrent neural networks applied to short-term load forecasting / P. V. Matrenin, V. Z. Manusov, A. I. Khalyasmaa, D. V. Antonenkov, S. A. Eroshenko, D. Butusov // Mathematics. - 2020. - V. 8. - № 12. - Art. 2169 (17 p.).
Varshney, H. A Singular Spectrum Analysis based Approach to Price Forecasting for a Day Ahead Electricity Market / H. Varshney, A. Sujil, R. Kumar // Conference Proceedings: 2018 8th IEEE India International Conference on Power Electronics - 13 - 15 Dec. 2018. - Pp. 1 - 6, DOI: 10.1109/ IICPE.2018.8709436.
Cao, M. T. Short-Term Load Forecasting Enhanced With Statistical Data-Filtering Method / M. T. Cao // Conference Proceedings: 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020) - January 2020, DOI: 10.1109/ PESGRE45664.2020.9070497.
Kumar, A. S. Forecasting HPC Workload Using ARMA Models and SSA / A. S. Kumar // Conference Proceedings: 2016 International Conference on Information Technology (ICIT) - December 2016, DOI: 10.1109/ICIT.2016.065.
Hayes, B. P. State Forecasting and Operational Planning for Distribution Network Energy Management Systems / B. P. Hayes, M. Prodanovic // IEEE Transactions on Smart Grid - 2016 - V. 7 № 2, DOI: 10.1109/TSG.2015.2489700.
Kumar, S. Forecasting HPC Workload Using ARMA Models and SSA / S. Kumar, S. Mazumdar // 2016 International Conference on Information Technology (ICIT). - 2016. - Pp. 294 - 297, DOI: 10.1109/ICIT.2016.52.
Subanar, W. S. Amplitude-Modulated Sinusoidal Model for The Sinusoidal Components of SSA Decomposition / W. S. Subanar, H. U. Suhartono, M. H. Lee // 2018 International Symposium on Advanced Intelligent Informatics (SAIN). - 2018. - Pp. 66 - 71, DOI: 10.1109/SAIN. 2018.8673374.
Liu, L. F. Electricity load forecasting for distribution network based on long short-term memory recurrent neural network / L. F. Liu, J. Lang, Q. M. Yue, D. He, K. Sun, L. L. Zhang // The 11th IET International Conference on Advances in Power System Control, Operation and Management. - 2018. - Pp. 1 - 5, DOI: 10.1049/cp. 2018.1798.
Jin, Y. Short Term Photovoltaic Output Prediction Based on Singular Spectrum Analysis / Y. Jin, R. Zhang // 2021 3rd Asia Energy and Electrical Engineering Symposium. - 2021. - pp. 903 - 910, DOI: 10.1109/AEEES51875.2021. 9403121.
Ansari, K. Real-Time Positioning Based on Kalman Filter and Implication of Singular Spectrum Analysis, in IEEE Geoscience and Remote Sensing Letters / K. Ansari - Jan. 2021. - V. 18. - № 1. - Pp. 58 - 61, DOI: 10.1109/ LGRS.2020.2964300.
Song, C. A Load Classification Framework Based on VMD and Singular Value Energy Difference Spectrum / C. Song, S. Chen, K. Guo, P. Zeng, X. Lv, Z. Jia, J. Yang // 2019 IEEE International Conference on Energy Internet (ICEI) 2019. - Pp. 398 - 402, DOI: 10.1109/ICEI.2019.00076.
Pham, M. H. A Novel Short-Term Load Forecasting Method by Combining the Deep Learning With Singular Spectrum Analysis / M. H. Pham, M. N. Nguyen, Y. K. Wu // in IEEE Access - May 2021. - V. 9. - Pp. 73736 - 73746, DOI: 10.1109/ACCESS. 2021.3078900.
Guo, Z. Short-term Load Forecasting Based on SSA-LSSVM Model / Z. Guo, L. Hu, J. Wang, M. Hou // 2021 4th International Conference on Energy, Electrical and Power Engineering. - 2021. - Pp. 1215 - 1219, DOI: 10.1109/CEEPE51765. 2021.9475790.
Cao, M. T. Short-Term Load Forecasting Enhanced With Statistical Data-Filtering Method / M. T. Cao, T. T. Pham, T. C. Kuo, D. M. Bui, H. V. Nguyen, T. H. Nguyen // 2020 International Conference on Power Electronics, Smart Grid and Renewable Energy. - 2020. - Pp. 1 - 8, DOI: 10.1109/PESGRE45664.2020.9070497.
Hao, Y. Wind Spees Multi-step interval prediction of wind speed based on singular spectrum analysis-and information granulation and limit learning machine / Y. Hao, Z. Yun, M. Anbo, Y. Lee // Grid Technology. - 2018. - V. 42. - № 05 - pp. 1467 - 1474, DOI: 10.13335/j.1000- 3673.pst.2017.2589.
Xia, X. Correlation Power Analysis for SM4 based on EEMD, Permutation Entropy and Singular Spectrum Analysis / X. Xia, B. Chen, W. Zhong, L. Wu // 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. - 2021. - Pp. 1478 - 1485, DOI: 10.1109/IAEAC50856.2021.9391101.
Yang, Z. Enhancing sustained oscillation detection by data pre-processing using SSA / Yang, M. Ghorbaniparvar, N. Zhou, Y. Chen // 2017 North American Power Symposium. - 2017. - Pp. 1 - 6, DOI: 10.1109/NAPS.2017.8107367.
Jiang, T. Synchrophasor Measurement-based Modal Analysis in Power Grids / Jiang, X. Li, L. Bai, F. Li // 2019 North American Power Symposium (NAPS) - 2019. - Pp. 1 - 5, DOI: 10.1109/ NAPS46351.2019.9000237.
Ansari, K. Real-Time Positioning Based on Kalman Filter and Implication of Singular Spectrum Analysis / K. Ansari // IEEE Geoscience and Remote Sensing Letters - January 2021. - V. 18. - № 1. - Pp. 58 - 61, DOI: 10.1109/LGRS. 2020.2964300.
DOI: http://dx.doi.org/10.34831/EP.2022.62.82.001
Ссылки
- На текущий момент ссылки отсутствуют.
© 1998 — 2024 НТФ "Энергопрогресс"
Адрес редакции: 129090, г. Москва, ул. Щепкина, д. 8
Телефон редакции 234-7449.
E-mail: prom_energy@rambler.ru; prom_energy1@mail.ru